Interactive clustering

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Clustering

We consider the problem of clustering with feedback. We study a recently proposed framework for the problem and present new results on clustering geometric concept classes in that model. In this model the clustering algorithm interacts with the user via “split” and “merge” requests to figure out the target clustering. We also give a simple generic algorithm to cluster any concept class in the m...

متن کامل

Interactive Bayesian Hierarchical Clustering

Clustering is a powerful tool in data analysis, but it is often difficult to find a grouping that aligns with a user’s needs. To address this, several methods incorporate constraints obtained from users into clustering algorithms, but unfortunately do not apply to hierarchical clustering. We design an interactive Bayesian algorithm that incorporates user interaction into hierarchical clustering...

متن کامل

Clustering with Interactive Feedback

In this paper, we initiate a theoretical study of the problem of clustering data under interactive feedback. We introduce a query-based model in which users can provide feedback to a clustering algorithm in a natural way via split and merge requests. We then analyze the “clusterability” of different concept classes in this framework — the ability to cluster correctly with a bounded number of re...

متن کامل

Interactive Unsupervised Clustering with Clustervision

Figure 1: An overview of Clustervision on a dataset describing 403 paintings by the “Joy of Painting” artist Bob Ross. (A) Ranked List of Clustering Results shows 16 different clustering results that are sorted by the aggregated quality measures; (B) Projection shows a selected clustering result (highlighted in yellow in (A)) on a projection of data points colored corresponding to corresponding...

متن کامل

Local algorithms for interactive clustering

We study the design of interactive clustering algorithms for data sets satisfying natural stability assumptions. Our algorithms start with any initial clustering and only make local changes in each step; both are desirable features in many applications. We show that in this constrained setting one can still design provably efficient algorithms that produce accurate clusterings. We also show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Behavior Research Methods & Instrumentation

سال: 1982

ISSN: 1554-351X,1554-3528

DOI: 10.3758/bf03202148